Skip to contents

Example of a Simulated Normal Model

Usage

example_hmm_mcmc_normal

Format

hmm_mcmc_normal object

Examples

# Data stored in the object
plot(density(example_hmm_mcmc_normal$data), main = "")


# Priors used in simulation
example_hmm_mcmc_normal$priors
#> $prior_means
#> [1] 0.60 0.95 1.95
#> 
#> $prior_sd
#> [1] 0.1564129
#> 
#> $prior_T
#>           [,1]      [,2]      [,3]
#> [1,] 0.5347611 0.4652389 0.0000000
#> [2,] 0.2121507 0.1163606 0.6714886
#> [3,] 0.0000000 0.5884313 0.4115687
#> 

# Model
example_hmm_mcmc_normal
#> Model: HMM Normal 
#> Type: MCMC 
#> Iter: 1500 
#> Warmup: 600 
#> Thin: 1 
#> States: 3 

summary(example_hmm_mcmc_normal)
#> Estimated means:
#>   mean[1]   mean[2]   mean[3] 
#> 0.5486377 1.0052886 1.9054420 
#> 
#> Estimated standard deviation:
#> 0.1983137
#> 
#> Estimated transition rates:
#>           1         2         3
#> 1 0.6916361 0.3083639 0.0000000
#> 2 0.3205970 0.5760693 0.1033337
#> 3 0.0000000 0.3734367 0.6265633
#> 
#> Number of windows assigned to hidden states:
#>    1    2    3 
#> 3698 3517  977 
#> 
#> Approximate Kullback-Leibler divergence between observed and estimated distributions:
#> 0.01327481
#> 
#> Log Likelihood:
#>         mean           sd       median 
#> -2795.575088     1.799081 -2795.238206 
#> 
#> P-value of t-test for difference between means of states (stepwise):
#> 1-2 2-3 
#>   0   0 
#>